

Compressed Air Filtration

Filters | Coalescers | Absorbers | Elements | Mist Eliminators

User Benefits

Boost quality and productivity

- Purify the compressed air by eliminating oil/dust contaminants
- Higher final product quality
- Increase your overall productivity

Save costs

- Prolong the life span of your operation process (machine/ equipment...)
- Reduce potential downtime
- Annual service intervals to ensure optimal operations

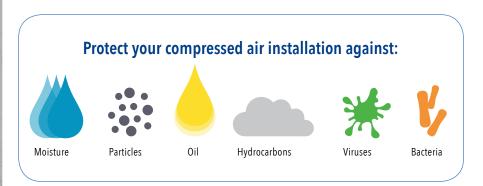
Easy operation and installation

Compatible with any compressor technology

- Can be installed quickly and into an existing network
- Optional pressure drop device (indicator/gauge) to advise on the cartridge replacement
- Cartridge replacement done in no time
- No electrical supply needed

Risks You Avoid

Impurities in the compressed air can cause:


- Damage to the distribution lines, increasing the leakage risk
- A considerable increase in maintenance costs
- A reduction in the efficiency and life span of the pneumatic devices
- Deterioration of the final product quality
- Limitations to the reliability of the production process and all its components
- Decrease of the overall profitability

How Clean Is Your Compressed Air?

Atmospheric air naturally contains several impurities such as dust, various forms of hydrocarbons and water in the form of humidity. Once sucked into the compressor, these are compressed and delivered down the line along with oily particles.

These polluting agents interact with each other and can generate abrasive and corrosive emulsions that can cause wear and corrosion in the downstream equipment.

Quality Air Solutions remove these contaminations from the compressed air.

Quincy Filters Keep Your Air Distribution Network In Optimal Shape!

In any compressed air net distribution it is a must to install one or more filters. As a result, an improved air quality is achieved, which benefits your complete compressed air network, including the downstream dryers, air pipes and pneumatic tools. It is recommended to filter your air in different stages by using two or three filters.

Using only a single filter could result in saturation of the filter and cause you to lose air pressure, suffer reduced air quality or end up prematurely replacing your elements.

Important Guidelines

When selecting purification equipment for your compressed air system, these are some useful quidelines to consider:

- 1. Depending on the application, each point of use in the system may require a different compressed air quality.
- 2. Ensure that the purification equipment which is being chosen will provide the required air purity in accordance with the classifications from the ISO 8573-1:2010 table.
- 3. When comparing filters to one another, make sure they have been tested in accordance with the standards of ISO 8573 and ISO 12500 series.
- 4. Whenever you compare different filtration solutions, it is crucial to keep in mind that the filter performance is highly dependent on the inlet conditions.
- 5. When taking into account the operational cost of oil coalescence filters, only compare the initial saturated wet pressure loss. The reason for this is that dry pressure loss is not representative for performance in a normally wet compressed air system.

- 6. For dust filters on the other hand, one can expect the pressure drop to rise over time. A low starting pressure drop does not mean it will remain as such throughout the filter element's lifetime.
- 7. Consider the total cost of ownership for purification equipment (purchase, operational and maintenance costs).

Your local sales representative can help you to select the optimal purification equipment for your compressed air system.

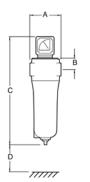
Compressed Air According to ISO 8573-1:2010

Depending on the customer's application, a certain air purity is required. These purity requirements have been categorized in air purity classes. The purity classes are defined in the ISO 8573-1 standard, edition 2010.

This table defines 7 purity classes ranging from 0 up to 6 following the rule: the lowr the class, the higher the air quality.

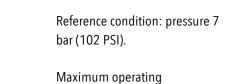
		Solid Particles		Wa	ter	Total Oil*
Purity Class	Nu	mber of particles per	m³	Pressure	Dewpoint	Concentration
	0.1 - 0.5 μm	0.5 - 1.0 μm	1.0 - 5.0 μm	°C	°F	mg/m³
0		As specified by th	e equipment user or s	upplier and more strir	gent than Class 1.	
1	≤ 20,000	≤ 400	≤ 10	≤ - 70	≤ - 94	≤ 0.01
2	≤ 400,000	≤ 6,000	≤ 100	≤ - 40	≤ - 40	≤ 0.1
3	N/A	≤ 90,000	≤ 1000	≤ - 20	≤ - 4	≤ 1
4	N/A	N/A	≤ 10,000	≤ 3	≤ 37.4	≤ 5
5	N/A	N/A	≤ 100,000	≤ 7	≤ 44.6	N/A
6		≤ 5 mg/m³		≤ 10	≤ 50	N/A

^{*} Liquid, aerosol and vapour.



A Solution for Every Air Quality

Technical Table


Model	Normal	Capacity	Maxi Pres		Connection/Port thread		Dimensions		Free space for cartridge replacement	Weight
wodei						A	В	С	D	
	m3/h	СҒМ	BAR	PSI	inches	inches	inches	inches	inches	lbs
Q_F-25	43	25	16	232	3/8	3.6	1.0	9.0	3.0	2.2
Q_F-50	90	50	16	232	1/2	3.6	1.0	9.0	3.0	2.4
Q_F-75	126	75	16	232	1/2	3.6	1.0	9.0	3.0	2.9
Q_F-100	180	100	16	232	3/4	4.3	1.1	11.9	3.0	4.2
Q_F-175	288	175	16	232	1	4.3	1.1	11.9	3.0	4.6
Q_F-300	504	300	16	232	1 1/2	5.5	1.3	11.7	3.9	9.3
Q_F-400	684	400	16	232	1 1/2	5.5	1.3	20.9	3.9	9.9
Q_F-550	936	550	16	232	1 1/2	5.5	1.3	20.9	3.9	10.1
Q_F-750	1296	750	16	232	2 1/2	7.1	2.0	24.3	5.9	15.2
Q_F-1000	1890	1000	16	232	3	8.3	2.0	28.3	7.9	24.3
Q_F-1500	2430	1500	16	232	3	8.3	2.0	35.0	7.9	27.8

Model Grades 1800-10,500

temperature of 151°F, and 95°F,

Minimum operating

temperature of 34°F

only for QAF series.

ASME Welded Steel Filters

Model	Norma	al Capacity	Maxi Pres		Conne	ctions		D	imensions		F	Free Space or Cartridge Replacement	Weight
							A		В	С		D	
Q_F-1800		1800	16	232	4	!	41.8	3	20.1	33.3	3	25.8	311
Q_F-2400		2400	16	232	4	ļ.	41.8	3	20.1	33.3	3	25.8	316
Q_F-3000	;	3000	16	232	6	,	46.8	3	24.4	35.4		26.0	363
Q_F-3800		3800	16	232	é	ò	49.8	3	25.2	38.6	5	26.0	368
Q_F-4500	4	4500	16	232	6		49.8	3	25.2	38.6	,	26.0	392
Q_F-6000	(6000	16	232	8	3	57.0)	32.3	41.3	3	26.0	926
Q_F-8500		8500	16	232	8	3	57.0)	32.3	41.3	3	26.0	944
Q_F-10500	1	0500	16	232	8	3	57.0)	32.3	41.3	3	26.0	953
Inlet pressure	(BAR)	1	2	3	4	5	6	7	8	10	12	14	16
Inlet pressure	(PSIG)	15	29	44	58	72.5	87	102	116	145	174	203	232
Correction fac	tor	0.38	0.53	0.65	0.75	0.83	0.92	1.00	1.06	1.20	1.31	1.41	1.50

For other compressed air inlet pressures, multiply the filter capacity by the following correction factors

Filter Range Overview

The quality of air required throughout a typical compressed air system varies. Offering an extensive filter range, Quincy Compressor can always match your precise requirements, ensuring that all types of contamination are avoided and costs are reduced to an absolute minimum.

QMF Filter Range

Micronic coalescing filters for general purpose protection, removing solid particles, liquid water and oil aerosol.

Total Mass Efficiency: 99 %

QCF Filter Range

High-efficiency coalescing filters, removing solid particles, liquid water and oil aerosol.

Total Mass Efficiency: 99.9 %

QPF Filter Range

Particulate filters for dust protection. Removes solid particles, dust, liquid and oil aerosol.

Count Efficiency: 99.8% at MPPS (MPPS = 0.1 micron)

QAF Filter Range

Activated carbon filter for removal of oil vapour and hydrocarbon odors.

1000 Hour Lifetime

	QMF	QCF	QPF	QAF
Filter Type	Oil aerosol & solid particles	Oil aerosol & solid particles	Oil aerosol & solid particles	Oil aerosol
Test Method	ISO 12500-1 ISO 8573-2	ISO 12500-1 ISO 8573-2	ISO 12500-1 ISO 12500-3 ISO 8573-2	ISO 8573-5
Inlet: Off Concentration (mg/m3)	10	10	10	0.01
Count Efficiency (% at MPPS) **	N/A	N/A	89.45%	N/A
Count Efficiency (% at 1 µm)	N/A	N/A	94.19	N/A
Count Efficiency (% at 0.01 µm)	N/A	N/A	93.63	N/A
Max Oil Carry-Over (mg/m3)	0.1	0.01	1.0	0.003
Dry Pressure Drop (MBAR)	N/A	N/A	85	160
Wet Pressure Drop (MBAR) *	205	240	115	N/A
Wet Pressure Drop (MBAR), in typical compressor installation	185	200	N/A	N/A
Element Service	After 4,000 operating hours or 1 year	After 4,000 operating hours or 1 year	After 4,000 operating hours or 1 year	After 4,000 operating hours or 1 year
Precede with	Water separator	QMF	N/A	QMF & QCF

^{*} Inlet oil concentration = 10 mg/m3

^{**} MPPS = Most Penetrating Particle Size of 0.01 µm

High Temperatures

1 Micron Dust Filters, 450°F, 150 PSIG

- Designed specifically for Heat Reactivated Desiccant Air Dryers
- Nomex outer layer is provided for high-temperature operation
- Push-to-fit design used on threaded filters for easy filter element replacement
- Multiwrap element construction provides optimum performance

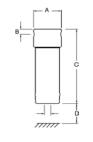
Aluminum Housing Threaded NPT Connctions 15 to 650 CFM, Series HTDT

- Features a high-temperature dust filter with heavy-duty bowl
- Ribbed bowl facilitates removal when changing elements

NOTE: Alloy filters shipped loose will have a special high-temperature black powder coat paint.

Specifications & Engineering Data

Dust Filters – Threaded


		Flow	Rate				Dime	nsions		We	ight	D	imensio	ns (Metri	c)
Filter Model	Pipe Size (NPT)	SCFM	Nm3/ hr	Element Model (Grade)	Number of Elements	A (in)	B (in)	C (in)	D (in)	lb	kg	A (mm)	B (mm)	C (mm)	D (mm)
HTDT-15	1/4	15	25	HTDE-15	1	2 1/2	1/2	6	2	0.5	0.25	63	15	150	50
HTDT-30	3/8	30	80	HTDE-30	1	2 1/2	1/2	7 1/2	2	0.6	0.27	63	15	190	50
HTDT-65	1/2	65	105	HTDE-65	1	4 1/2	1 1/2	12	6	5.7	2.60	114	38	305	150
HTDT-75	3/4	75	121	HTDE-75	1	4 1/2	1 1/2	12	6	5.7	2.60	114	38	305	150
HTDT-150	1	150	241	HTDE-150	1	4 1/2	1 1/2	15 1/2	6	7.3	3.30	114	38	395	150
HTDT-300	1 1/2	300	482	HTDE-300	1	5 3/4	2	21	7	16.5	7.50	146	50	435	170
HTDT-450	2	450	723	HTDE-450	1	5 3/4	2	21	7	16.5	7.50	146	50	435	170
HTDT-650	2	650	1044	HTDE-650	1	5 3/4	2	25	7	22.0	10.0	146	50	635	170

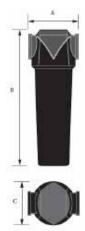
Specs

		May	c. Oil	Ma	· · ·	Pressure Loss						May V	Vorking		
Filter Element	Particle Removal	Carr	yover	Tempe		Clean	and Dry	v	Vet		ange ement		sure	Element End Cap Color	
in Microns			at 20°C mg/m3		°C	PSI	MBAR	PSI	MBAR	PSI	MBAR	PSIG	BARG	Code	
					High-te	mperatur	e dust filte	r eleme	nt grade						
HTDE	Ī	2	2	450	233	1.1	75	N/A	N/A	6	414	150	10	Brick Red	

Correction Fa	actor					
Operating	PSIG	145	290	435	580	725
Pressure	BARG	10	20	30	40	50
Correction Fa	ctor	0.34	0.57	0.71	0.86	1.0

For maximum flow rate, multiply model flow rate shown in the above table by the correction factor corresponding to the working pressure.

Models HTDT 65-650


Mechanical Moisture Separators

20 to 1700 CFM, 232 PSIG, Series QWS

Quincy Mechanical Moisture Separators are designed to remove bulk liquids and large volumes of water. They are typically installed downstream of after coolers, air receivers, refrigerated air dryers and at strategic points of use throughout the compressed air distribution system. The design employs an internal spinner to create a centrifugal action that effectively removes large quantities of water.

- Annular seal and captive O-ring prevent leaks
- Aluminum housings (1/4" to 3 NPT) feature Alochrom coating to prevent corrosion
- Low pressure drop: < 2 PSIG
- CRN approved

Specifications & Engineering Data

Moisture Separators

	Pipe Size	Flow	Rate		Dimensions		We	ight	Dimensions (Metric)			
Filter Model	(NPT)	SCFM	Nm3/hr	A (inches)	B (inches)	C (inches)	lb	kg	A (mm)	B (mm)	C (mm)	
QWS 21	1/4"	21	34	3.0	7.2	2.5	1.3	0.6	76.2	182.9	63.5	
QWS 85A	3/8"	85	136	3.8	9.3	3.3	2.4	1.1	96.5	236.2	83.8	
QWS 85B	1/2"	85	136	3.8	9.3	3.3	2.4	1.1	96.5	236.2	83.8	
QWS 233A	3/4"	233	374	5.1	10.8	4.5	4.8	2.2	129.5	274.3	114.3	
QWS 233B	1"	233	374	5.1	10.8	4.5	4.8	2.2	129.5	274.3	114.3	
QWS 742A	1 1/4"	742	1191	6.7	17.0	6.1	11.2	5.1	170.2	431.8	154.9	
QWS 742B	1 1/2"	742	1191	6.7	17.0	6.1	11.2	5.1	170.2	431.8	154.9	
QWS 742C	2"	742	1191	6.7	17.0	6.1	11.2	5.1	170.2	431.8	154.9	
QWS 1695A	2 1/2"	1695	2720	8.1	19.9	7.1	22.0	10.0	205.7	505.5	180.3	
QWS 1695B	3"	1695	2720	8.1	19.9	7.1	22.0	10.0	205.7	505.5	180.3	

Specs

Filter Model		ommended Temperature	Min. Reco Operating T			essure Loss ed Flow	Max. Worki	ng Pressure
	°F	°C	°F	°C	PSI	MBAR	PSIG	BARG
QWS	176	80	35	1.5	1	67	232	16

Correction Factor									
On arating Process	PSIG	15	29	44	58	73	87	100	116
Operating Pressure	BARG	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
Correction Factor		4.00	2.63	2.00	1.59	1.33	1.14	1.00	0.94
On anatin a Duanana	PSIG	131	145	160	174	189	203	218	232
Operating Pressure	BARG	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0
Correction Factor		0.89	0.85	0.82	0.79	0.76	0.73	0.71	0.68

High-Pressure

Aluminum Filters

Coalescer - Absorber

Quincy's aluminum alloy, 750 PSIG high-pressure filter lineup offers an economic alternative to the high cost of stainless steel. There are two levels of coalescing and an activated carbon absorber. Ideally suited for the PET bottle blowing industry, the coalescers remove various levels of liquid aerosols and the activated carbon absorber removes vapor and odors.

- High-temperature capacity (250°F.)
- Multiwrap element construction for optimum performance and long life
- Synthetic lubricant and mineral oil compatibility
- Large sump and quiet zone to prevent re-entrainment
- Push-to-fit design for easy filter element replacement
- Modular design allows for easy installation of multiple filters and saves energy

750 PSIG/250°F 150 to 3000 SCFM (1/2" to 2" NPT)

- HSCT standard coalescer
- HPCT polishing coalescer
- HACT activated carbon

Stainless Steel Filters

Coalescer – Absorber

Quincy's line of 316 grade Stainless Steel filters for pressure requirements of 750 PSIG through 5000 PSIG feature:

- Three pressure ranges (750 PSIG, 1,500 PSIG, 5,000 PSIG)
- Heavy-duty, Stainless Steel tie rod design for 1500 PSIG and 5000 PSIG

750 PSIG/250°F 60 to 2000 SCFM (1/2" to 2" NPT)

- SSCT standard coalescer
- SPCT polishing coalescer
- SACT activated carbon

1500 PSIG/250°F 65 to 2050 SCFM (1/2" to 2" NPT)

- ESCT standard coalescer
- EPCT polishing coalescer
- EACT activated carbon

5000 PSIG/250°F 28 to 775 SCFM (1/2" to 11/2" NPT)

- VSCT standard coalescer
- VPCT polishing coalescer
- VACT activated carbon

750 PSIG - Specifications & Engineering Data Aluminum, **750 PSIG**

Filter	Pipe	Flow	/ Rate	Element Model	# of	Dimensions				Weight		Dimensions (Metric)			
Model (Grade)	Size (NPT)	SCFM	Nm3/hr	Model (Grade)	Elements	A (in)	B (in)	C (in)	D (in)	lb	kg	A (mm)	B (mm)	C (mm)	D (mm)
Grade-94	1/4	94	160	HE-94	1	2 1/2	1/2	6	2	0.5	0.25	63	15	150	50
Grade-147	3/8	147	250	HE-147	1	2 1/2	1/2	7 1/2	2	0.6	0.27	63	15	190	50
Grade-265	1/2	265	450	HE-265	1	4 1/2	1 1/2	12	6	5.7	2.60	114	38	305	150
Grade-324	3/4	324	550	HE-324	1	4 1/2	1 1/2	12	6	5.7	2.60	114	38	305	150
Grade-492	1	492	835	HE-492	1	4 1/2	1 1/2	15 1/2	6	7.3	3.30	114	38	395	150
Grade-1015	1 1/2	1015	1725	HE-1015	1	5 3/4	2	21	7	16.5	7.50	146	50	435	170
Grade-1132	2	1132	1925	HE-1132	1	5 3/4	2	21	7	16.5	7.50	146	50	435	170
Grade-1882	2	1882	3200	HE-1882	1	5 3/4	2	25	7	22.0	10.0	146	50	635	170

Specs

		May	. Oil	M	ax.			Pressu	re Loss			May V	orking	
Filter	Particle Removal in	Carry	yover	Tempe	erature	Clean a	and Dry	W	/et		inge ment		sure	Element End Cap
Element	Microns	at 68°F ppm	at 20°C mg/ m3	°F	°C	PSI	MBAR	PSI	MBAR	PSI	MBAR	PSIG	BARG	Color Code
				High-p	ressure a	luminum	filter eler	nent gra	des, 750 F	PSIG				
HSCE	1.0	0.1	0.1	248	120	1.1	75	2.2	150	6	400	750	50	Black
HPCE	0.01	0.01	0.01	248	120	1.5	100	4.4	300	6	400	750	50	Black
HACE	0.01	0.003	0.003	77	25	1.1	75		see r	otes		750	50	Black

Stainless Steel, 750 PSIG

Filter	Pipe	F	low Rate	Element	# of		Dime	nsions		Wei	ght	Din	nensior	ns (Met	tric)
Model (Grade)	Size (NPT)	SCFM	Nm3/hr	Model (Grade)	Elements	A (in)	B (in)	C (in)	D (in)	lb	kg	A (mm)	B (mm)	C (mm)	D (mm)
Grade-60	1/4	60	100	SE-60	1	3 1/2	3/4	7	3	3.80	1.70	85	18	170	75
Grade-120	3/8	120	200	SE-120	1	3 1/2	3/4	8	4	4.40	2.00	85	18	205	100
Grade-200	1/2	200	340	SE-200	1	3 1/2	3/4	10	4	4.90	2.20	85	18	255	100
Grade-300	3/4	300	500	SE-300	1	4 1/2	1 1/4	11	6	8.80	4.00	110	27	270	150
Grade-600	1	600	1000	SE-600	1	4 1/2	1 1/4	17	12	11.0	5.00	110	27	420	300
Grade-1000	1 1/2	1000	1700	SE-1000	1	6	1 3/4	21	12	33.0	15.0	150	45	525	300
Grade-1200	2	1200	2040	SE-1200	1	6	1 3/4	21	12	33.0	15.0	150	45	525	300
Grade-2000	2	2000	3400	SE-2000	1	6	1 3/4	33	20	46.0	21.0	150	45	825	500

Specs

		Mox	c. Oil	D.O.	ax.			Pressu	re Loss			Max V	orking	
Filter Element	Particle Removal in		yover		erature	Clean a	and Dry	W	/et		nge nent		sure	Element End Cap Color
	Microns	at 68°F PPM	at 20°C mg/m3	=	°C	PSI	MBAR	PSI	MBAR	PSI	MBAR	PSIG	BARG	Code
				High-pre	essure sta	inless ste	el filter el	ement gı	rades, 750	PSIG			•	
SSCE	1.0	0.1	0.1	248	120	1.1	75	2.2	150	10	700	750	50	Black
SPCE	0.01	0.01	0.01	248	120	1.5	100	4.4	300	10	700	750	50	Black
SACE	0.01	0.003	0.003	77	25	1.1	75		see n	otes		750	50	Black

Correction Fa	actor for A	Muminum	1			
Operating	PSIG	145	290	435	580	725
Pressure	BARG	10	20	30	40	50
Correction Fa	ctor	0.34	0.57	0.71	0.86	1.0

For maximum flow rate, multiply model flow rate shown in the above table by the correction factor corresponding to the working pressure.

Correction	Factor	for Sta	inless	Steel					
Operating	PSIG	58	87	116	145	220	435	580	725
Pressure	BARG	4	6	8	10	15	30	40	50
Correction	Factor	0.14	0.22	0.28	0.34	0.47	0.70	0.85	1.0

For maximum flow rate, multiply model flow rate shown in the above table by the correction factor corresponding to the working pressure.

High-Pressure

1500 & 5000 PSIG - Specifications & Engineering Data

Stainless Steel, 1500 PSIG

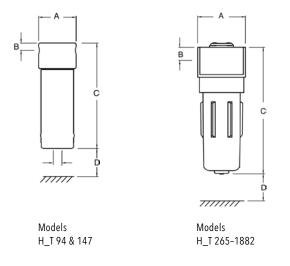
Filter	Pipe	Flow	v Rate	Element	# of		Dime	nsions		Wei	ght	Dir	nensior	ıs (Meti	ric)
Model (Grade)	Size (NPT)	SCFM	Nm3/hr	Model (Grade)	Elements	A (in)	B (in)	C (in)	D (in)	lb	kg	A (mm)	B (mm)	C (mm)	D (mm)
				High-pressur	e stainless stee	el filter e	elemen	t grade	s, 1500	PSIG					
Grade-65	1/4	65	110	EE-65	1	2 3/4	3/4	6	3	7.10	3.20	65	20	135	70
Grade-185	3/8	185	315	EE-185	1	2 3/4	3/4	10	7	12.3	5.60	65	20	250	180
Grade-270	1/2	270	460	EE-270	1	3 1/2	3/4	11	10	13.5	6.10	88	20	275	250
Grade-400	3/4	400	680	EE-400	1	5 1/8	1	11	6	23.2	10.5	132	26	265	150
Grade-700	1	700	1200	EE-700	1	5 1/8	1	19	12	32.4	14.7	132	26	480	300
Grade-1050	1 1/2	1050	1785	EE-1050	1	6	1 3/4	21	12	48.5	22.0	150	45	525	300
Grade-2050	2	2050	3485	EE-2050	1	6	1 3/4	33	20	61.7	28.0	150	45	825	500

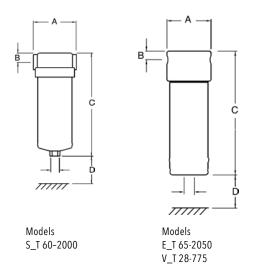
Specs

		May	. Oil	M	ax.			Pressu	re Loss			May W	/orking	
Filter	Particle Removal		over		erature	Clean a	and Dry	w	et et		inge ment	l e	sure	Element End Cap
Element	in Microns	at 68°F ppm	at 20°C mg/ m3	°F	°C	PSI	MBAR	PSI	MBAR	PSI	MBAR	PSIG	BARG	Color Code
				High-pre	essure sta	inless ste	el filter el	ement gr	ades, 150	00 PSIG				
ESCE	1.0	0.1	0.1	248	120	1.1	75	2.2	150	6	400	1500	100	Black
EPCE	0.01	0.01	0.01	248	120	1.5	100	4.4	300	6	400	1500	100	Black
EACE	0.01	0.003	0.003	77	25	1.1	75		see r	otes		1500	100	Black

Stainless Steel, 5000 PSIG

Filter	Pipe	Flow	/ Rate	Element	# of		Dime	nsions		Wei	ght	Di	mensior	ns (Metr	ic)
Model (Grade)	Size (NPT)	SCFM	Nm3/hr	Model (Grade)	Elements	A (in)	B (in)	C (in)	D (in)	lb	kg	A (mm)	B (mm)	C (mm)	D (mm)
				High-press	ure stainless ste	eel filter	eleme	nt grad	es, 500	0 PSIG					
Grade-28	1/4	28	48	VE-28	1	1 3/4	1/2	4	3	3.50	1.60	41	10	103	60
Grade-67	3/8	67	111	VE-67	1	2 3/4	3/4	6	3	7.10	3.20	65	20	135	70
Grade-150	1/2	150	255	VE-150	1	3 1/2	3/4	9	6	12.3	5.60	88	20	210	150
Grade-310	3/4	310	520	VE-310	1	3 1/2	1	11	10	13.5	6.10	88	25	280	250
Grade-445	1	445	750	VE-445	1	6	1 1/2	13	8	32.0	14.5	150	35	330	200
Grade-775	1 1/2	775	1330	VE-775	1	6	1 1/2	19	12	38.4	17.4	150	35	180	300


Specs


		May	. Oil	M	ax.			Pressu	re Loss			May W	orking	
Filter	Particle Removal	Carry	over/	Tempe	erature	Clean a	and Dry	W	/et		inge nent		sure	Element
Element	in Microns	at 68°F PPM	at 20°C mg/ m3	°F	°C	PSI	MBAR	PSI	MBAR	PSI	MBAR	PSIG	BARG	End Cap Color Code
				High-pr	essure sta	ainless ste	eel filter e	lement g	rades, 500	00 PSIG				
VSCE	1.0	0.1	0.1	248	120	1.1	75	2.2	150	10	700	5000	350	Black
VPCE	0.01	0.01	0.01	248	120	1.5	100	4.4	300	10	700	5000	350	Black
VACE	0.01	0.003	0.003	77	25	1.1	75		see r	notes		5000	350	Black

Correction Factor for	Stainless S	teel, 1500 P	SIG							
On arating Programs	PSIG	290	435	580	725	870	1015	1160	1300	1500
Operating Pressure	BARG	20	30	40	50	60	70	80	90	100
Correction Factor		0.45	0.57	0.68	0.80	0.84	0.88	0.92	0.96	1.0

Correction Factor for	Stainless Steel,	, 5000 PSIG						
Operating Pressure	PSIG	725	1450	2175	2900	3625	4350	5000
Operating Fressure	BARG	50	100	150	200	250	300	350
Correction Factor		0.73	0.78	0.82	0.87	0.91	0.96	1.0

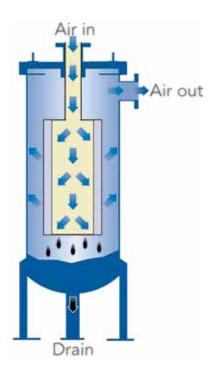
For maximum flow rate, multiply model flow rate shown in the above table by the correction factor corresponding to the working pressure.

Mist Eliminator

High Efficiency Heavy-Duty Coalescing Filter

Long Life and Low Pressure Drop

The Quincy Mist Eliminator is a heavy-duty coalescing type filter engineered to efficiently remove oil, particulate, and water from compressed air. By using a combination of impaction, interception and Brownian Movement, the Quincy Mist Eliminator achieves 100% efficiency in removing particles 3 micron and larger, 99.8% of 0.1 micron and larger and 99.5% of 0.01 micron and larger. Typical pressure drop is less than 1 psig. Average element life in continuous service is 10 years. A 10-year element life can be achieved in relatively clean environments.


- Lower pressure drop compared to conventional coalescing and particulate filters (average 1 psig versus 6 psig). Higher pressure drops require the compressor to operate at an elevated pressure, therefore requiring more power. Every 2 psig reduction in pressure saves approximately 1% air compressor power based on 100 psig operating pressure. Quincy Mist Eliminator could easily save in excess of \$1,500 per year in air compressor electrical energy (based on 8,000 hours per year operation, \$0.07 per Kw hour, 100 hp compressor and a 93% motor efficiency).
- Large tank volume captures and retains inadvertent lubricant discharge caused by compressor separation system malfunction, which protects downstream equipment.
- Average element life of 10 years versus 6 months for conventional coalescing and particulate filter elements reduces maintenance and waste disposal.

Unique Double Element Design

1,500 cfm through 15,000 cfm models utilize a space-saving double element design (see Figure 2). Using a double nesting technique, the Quincy Mist Eliminator offers high efficiency separation in a low profile package. By nesting an element inside an element, total surface area is greater than conventional single element designs. Due to reduced overall height, the Quincy Mist Eliminator can be installed in locations where conventional single element designs cannot. For example, a 10,000 cfm Quincy Mist Eliminator low profile design is only 118 inches tall. Compare this to other single element designs that are 210 inches tall. That's a reduction of over 7 feet in overall height! Imagine the savings in time and convenience when you change the element or service the unit.

All Quincy Mist Eliminator tanks are ASME coded and stamped. Standard equipment includes a calibrated differential pressure

gauge and enamel paint.
No Loss Demand Drains
are optional. Pressure relief
valves are not included but
may be required
by local codes.

Specifications & Engineering Data

Mist Eliminator

	CCT14		Dimension	ns Removal	Min. Filter	Flanged	In/Out Drain	
Model	SCFM at 100 PSIG	Max. PSIG	Diameter (inches)	Height (inches)	Clearance* (inches)	Approx Wt. lb.	Connections (inches)	Connections (inches)
ME-250S	250	150	14	45 1/8	22	471	1 1/2	1 NPT
ME-500S	500	150	14	58 1/8	35	518	2	1 NPT
ME-800S	800	150	14	73 1/4	50	586	2 1/2	1 NPT
ME-1100S	1100	150	16	78 1/2	55 1/8	664	3	1 NPT
ME-1500TP	1500	150	18	69 7/8	45 3/8	805	4	1 NPT
ME-1900TP	1900	150	18	74 7/8	50 3/8	965	4	1 NPT
ME-2500TP	2500	150	18	86 7/8	62 3/8	860	5	1 NPT
ME-3500TP	3500	150	24	86 11/16	59 7/8	1400	5	1 NPT
ME-4500TP	4500	150	24	99 3/4	72 7/8	1517	6	1 NPT
ME-5000TP	5000	150	24	105 3/4	78 7/8	1564	6	1 NPT
ME-6000TP	6000	150	24	120 7/8	93 7/8	1726	8	1 NPT
ME-7000TP	7000	150	30	108 3/8	80 1/8	2450	8	1 1/2 NPT
ME-8000TP	8000	150	30	116 3/8	88 1/8	2520	8	1 1/2 NPT
ME-9000TP	9000	150	30	124 3/8	96 1/8	2603	8	1 1/2 NPT
ME-10000TP	10000	150	36	118 3/16	88 5/8	3640	10	1 1/2 NPT
ME-15000TP	15000	150	42	132 11/16	100 7/8	CF	10	1 1/2 NPT

Notes: Larger Sizes Available, Consult Factory * Does Not Include Rigging.

Compressed Air Filters Quincy Compressor Air Quality Performance Guarantee

- Quincy Compressor offers a performance guarantee on its Air Treatment Filtration line.
 Quincy's Filters are guaranteed to perform to the currently published specifications as found in filtration documentation available at www.quincycompressor.com/literature_library.html.
- Under normal operating conditions, and when installed in an original installation, the Quincy QCF, QMF, and QPF filter elements meet or exceed air quality standards of ISO 8573. The Quincy filters are guaranteed to operate for 6,000 hours or 12 months, whichever shall occur first, before reaching the recommended 6 PSIG pressure differential for filter replacement.
- Quincy Compressor guarantees that the aforementioned filters will perform as stated above, or Quincy Compressor will either repair or replace the filter or element, at Quincy's discretion. Quincy Compressor will not be responsible for removal, reinstallation and/or related costs.

The Air Quality Performance Guarantee is in accordance and established based upon Air Quality-ISO 8573 standard for oil-free and contaminant-free compressed air applications. The Air Quality Performance Guarantee remains in effect for the below listed site so far as all installation and maintenance requirements set forth and in accordance with the warranty and policies and procedures handbook, under Section 1 General Information; Warranty Coverage Rules are maintained.

Quincy Helps You Do More. For Less.

Combining nearly 100 years of expertise with unrivaled quality and performance, Quincy Compressor is the headquarters for your air filtration needs. Innovative filtration solutions are engineered to provide the best quality air and meet today's increasing quality demands.

Backed by the Air Quality Performance Guarantee, Quincy Compressor offers a full line-up of superior quality filtration solutions to meet the high quality requirements of your specific application.

Exceed your expectations by providing your system with Quincy Compressor filters.

Quality Comes in All Shapes and Sizes– But Just One Color.

The Quincy Promise

Quincy Compressor and its partnering distributors promise to provide you with uncompromising reliability in all Quincy equipment. This makes your compressed air system one less thing that you need to worry about, allowing you to focus on your company's productivity and profitability.

The Quincy Solution

Operating at peak efficiency and providing quality product is a priority for many of our customers. Quincy Compressor in partnership with our global network of authorized distributors strives to be your provider for all of your compressed air system needs. From the air compressor to filtration to dryers and storage solutions, Quincy Compressor is your single-source provider for all of your compressed air system needs.

Air Compressors

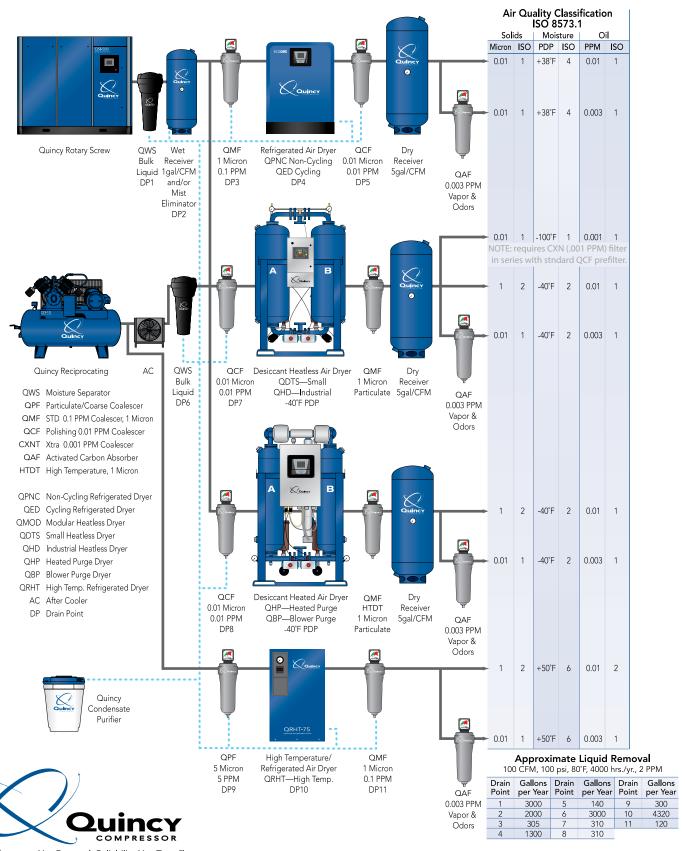
Quincy Compressor is a premier provider of many different types of air compressors designed for a variety of applications using different compression technologies.

The Quincy QT is a Reciprocating Splash Lubricated compressor for tough everyday use. The Quincy QP is a reciprocating fully pressure lubricated compressor for a competitive advantage. The Quincy QR is a reciprocating compressor designed for the most demanding conditions. The Quincy QGS 5-30 HP is a heavy-duty belt driven rotary compressor at a competitive price. The Quincy QSI provides an industrial-grade premium fixed-speed rotary screw air compressor.

The Quincy QGV provides a premium variable-speed rotary screw air compressor designed to optimize your energy efficiency.

Compressed Air Treatment

Quincy Compressor is your single-source provider of compressed air treatment products to complement your air compressor. Quincy provides refrigerated air dryers, desiccant air dryers, compressed air filtration from 5 to .01 micron, condensate drains, condensate management systems, storage solutions, and flow control valves. Quincy Compressor is truly a single-source provider for all of your compressed air needs.


Genuine Parts

Genuine Parts from Quincy Compressor keep your equipment running like new. When servicing your Quincy compressor, insist on Genuine Quincy parts. Not only will you save time and money, but you will gain the peace-of-mind from using only the highest quality parts worthy of the Quincy name.

System Controls

Whether you have one air compressor or many air compressors from many different manufacturers, Quincy Compressor provides you with a way to control and monitor all of the components in your compressed air system in a way that maximizes your energy efficiency and decreases your energy costs. Whether you need to control your system on site or from half way around the world, Quincy Compressor is your source for reliable, efficient controls.

Compressed Air Systems Best Practice

Performance You Demand. Reliability You Trust.™